

Vulcanexus Documentation

[image: Vulcanexus]
 [http://www.vulcanexus.com/]Vulcanexus is a ROS 2 (Robot Operating System) all-in-one tool set.
It allows users to build robotics applications combining the unique Vulcanexus elements with the ROS 2 libraries, having Fast DDS as its fixed middleware implementation.

These open source elements include numerous features and tools, providing Vulcanexus users customizable solutions while improving overall system performance.
With Vulcanexus, users have fast access to constantly improving functionalities, such as the latest Fast DDS version along with its new features.

Vulcanexus combinable elements are:

	VULCANEXUS-CORE: a set of software libraries that enables users to build the most comprehensive and straightforward robotics application.
It consists of eProsima Fast DDS and ROS 2.

	VULCANEXUS-TOOLS: a set of features and applications which allows users to test, improve and configure the performance of Vulcanexus in their systems.

	VULCANEXUS-MICRO: provides access for resource constrained devices (micro-controllers) to the DDS world, bridging the gap between them and ROS 2.

	VULCANEXUS-CLOUD: scales and integrates ROS 2 networks located in geographically spaced environments, and enables the deployment of DDS entities in the cloud in a quick and easy way.

	VULCANEXUS-SIMULATION: enables users to design robotic simulations, providing an end-to-end development environment to model, program, and simulate robots.

Vulcanexus created a collection of downloadable packages that include useful combinations of the previously described elements with ROS 2:

[image: _images/vulcanexus_packages_table.svg]

The following documentation includes instructions for installing each Vulcanexus packages, some tutorials help users to get started, and the supported platforms and releases.

1. Linux binary installation

Debian packages for Vulcanexus Galactic Gamble are currently available for Ubuntu Focal.
Since Vulcanexus is a ROS 2 all-in-one tool set, certain ROS 2 prerequisites need to be met before installing.

1.1. ROS 2 prerequisites

First of all, set up a UTF-8 locale as required by ROS 2.
Locale settings can be checked and set up with the following commands:

locale # check for UTF-8

sudo apt update && sudo apt install locales
Any UTF-8 locale will work. Using en_US as an example
sudo locale-gen en_US en_US.UTF-8
sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
export LANG=en_US.UTF-8

ROS 2 also requires that the Ubuntu Universe repository is enabled.
This can be checked and enabled with the following commands:

apt-cache policy | grep universe

This should print something similar to:
#
500 http://us.archive.ubuntu.com/ubuntu focal/universe amd64 Packages
release v=20.04,o=Ubuntu,a=focal,n=focal,l=Ubuntu,c=universe,b=amd64
#
Otherwise run

sudo apt install software-properties-common
sudo add-apt-repository universe

Now download ROS 2 GPG key into the keystore.

sudo apt update && sudo apt install curl gnupg lsb-release
sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o /usr/share/keyrings/ros-archive-keyring.gpg

And finally add ROS 2 repository to the repository manager sources list.

echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-keyring.gpg] http://packages.ros.org/ros2/ubuntu $(source /etc/os-release && echo $UBUNTU_CODENAME) main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null

1.2. Setup Vulcanexus sources

Once all ROS 2 prerequisites have been met, it is time to start setting up Vulcanexus.

First, add the Qt 5.15 repository, required for the installation of several Fast DDS Monitor dependencies, running the commands:

sudo apt install software-properties-common
sudo add-apt-repository ppa:beineri/opt-qt-5.15.2-focal

Next, add Vulcanexus GPG key so apt can retrieve the packages:

sudo curl -sSL https://raw.githubusercontent.com/eProsima/vulcanexus/main/vulcanexus.key -o /usr/share/keyrings/vulcanexus-archive-keyring.gpg

Finally, add the eProsima Vulcanexus repository to the repository manager sources list:

echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/vulcanexus-archive-keyring.gpg] http://repo.vulcanexus.org/debian $(source /etc/os-release && echo $UBUNTU_CODENAME) main" | sudo tee /etc/apt/sources.list.d/vulcanexus.list > /dev/null

1.3. Install eProsima Vulcanexus packages

Remember to update the apt repository caches after setting up the repositories:

sudo apt update

Desktop install (Recommended): includes all the simulation tools, demos, and tutorials.

sudo apt install vulcanexus-galactic-desktop

Base Install: basic installation without simulation tools, demos, and tutorials.

sudo apt install vulcanexus-galactic-base

For other Vulcanexus packages, please refer to the Introduction section for more
information.

1.4. Environment setup

In order to use the Vulcanexus installation, the environment must be set up sourcing the following file:

source /opt/vulcanexus/galactic/setup.bash

1.5. Uninstall eProsima Vulcanexus packages

To uninstall Vulcanexus, it is enough to run the following command :

sudo apt autoremove vulcanexus-galactic-desktop

2. Linux installation from sources

This section explains how to build Vulcanexus in Ubuntu Focal.
Since Vulcanexus is a ROS 2 all-in-one tool set, certain ROS 2 prerequisites need to be met before building.

2.1. ROS 2 prerequisites

First of all, set up a UTF-8 locale as required by ROS 2.
Locale settings can be checked and set up with the following commands:

locale # check for UTF-8

sudo apt update && sudo apt install locales
Any UTF-8 locale will work. Using en_US as an example
sudo locale-gen en_US en_US.UTF-8
sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
export LANG=en_US.UTF-8

ROS 2 also requires that the Ubuntu Universe repository is enabled.
This can be checked and enabled with the following commands:

apt-cache policy | grep universe

This should print something similar to:
#
500 http://us.archive.ubuntu.com/ubuntu focal/universe amd64 Packages
release v=20.04,o=Ubuntu,a=focal,n=focal,l=Ubuntu,c=universe,b=amd64
#
Otherwise run

sudo apt install software-properties-common
sudo add-apt-repository universe

Now download ROS 2 GPG key into the keystore.

sudo apt update && sudo apt install curl gnupg lsb-release
sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o /usr/share/keyrings/ros-archive-keyring.gpg

And then add ROS 2 repository to the repository manager sources list.

echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-keyring.gpg] http://packages.ros.org/ros2/ubuntu $(source /etc/os-release && echo $UBUNTU_CODENAME) main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null

With the ROS 2 repository properly set up the next step is to install the required dependencies and tools for cloning and testing the ROS 2 packages within the workspace.

sudo apt update && sudo apt install -y \
build-essential \
cmake \
git \
python3-colcon-common-extensions \
python3-flake8 \
python3-pip \
python3-pytest-cov \
python3-rosdep \
python3-setuptools \
python3-vcstool \
wget
install some pip packages needed for testing
python3 -m pip install -U \
flake8-blind-except \
flake8-builtins \
flake8-class-newline \
flake8-comprehensions \
flake8-deprecated \
flake8-docstrings \
flake8-import-order \
flake8-quotes \
pytest-repeat \
pytest-rerunfailures \
pytest \
setuptools

2.2. Get ROS 2 code

Create a workspace for Vulcanexus and clone the ROS 2 repositories

mkdir -p ~/vulcanexus_galactic/src
cd ~/vulcanexus_galactic
wget https://raw.githubusercontent.com/ros2/ros2/galactic/ros2.repos
vcs import src < ros2.repos

Now download the required dependencies for these packages.

sudo rosdep init
rosdep update
rosdep install --from-paths src --ignore-src -y --skip-keys "fastcdr rti-connext-dds-5.3.1 urdfdom_headers"

2.3. Get Vulcanexus code

Add the Vulcanexus repositories and metadata files to the Vulcanexus workspace:

cd ~
cd vulcanexus_galactic
wget https://raw.githubusercontent.com/eProsima/vulcanexus/galactic/vulcanexus.repos
wget https://raw.githubusercontent.com/eProsima/vulcanexus/galactic/colcon.meta
vcs import --force src < vulcanexus.repos

2.4. Install Vulcanexus dependencies

Some additional dependencies which are required for the Vulcanexus distribution must be installed.
Start by adding the Qt 5.15 repository required for the installation of several Fast DDS Monitor dependencies:

sudo apt install -y software-properties-common
sudo add-apt-repository -y ppa:beineri/opt-qt-5.15.2-focal

Next, install the Vulcanexus required development tools:

sudo apt update && sudo apt install -y \
 libp11-dev \
 libengine-pkcs11-openssl \
 libyaml-cpp-dev \
 openjdk-8-jdk \
 qt5-default \
 qt5153d \
 qt515charts-no-lgpl \
 qt515graphicaleffects \
 qt515quickcontrols \
 qt515quickcontrols2 \
 qt515quicktimeline-no-lgpl \
 qt515svg \
 qt515tools \
 qt515translations \
 swig

2.5. Build the code in the workspace

If any other Vulcanexus or ROS 2 distribution has been installed from binaries, please ensure that the build is done in a fresh environment (previous installation is not sourced).
This can be checked running the following command:

printenv | grep 'VULCANEXUS\|ROS'

The output should be empty.
Please, be aware that in case the environment sourcing has been added to .bashrc, it must be removed in order to get a fresh environment.

2.5.1. Build Fast DDS-Gen (Optional)

Fast DDS-Gen is a Java application that generates source code using the data types defined in an IDL file.
This tool must be built separately following the instructions below.
Please, refer to Fast DDS-Gen documentation [https://fast-dds.docs.eprosima.com/en/latest/fastddsgen/introduction/introduction.html] for more information about this tool.

cd src/eProsima/fastddsgen
./gradlew assemble

The generated Java application can be found in share/fastddsgen.
However, the scripts folder provides some user friendly scripts that are recommended to be used.
This scripts can be made accessible to the session adding the scripts folder path to the PATH environment variable.

export PATH=~/vulcanexus_galactic/src/eProsima/fastddsgen/scripts:$PATH

2.5.2. Build workspace

In order to build the workspace, the command line tool colcon [https://colcon.readthedocs.io/en/released/] is used.
This tool is based on CMake [https://cmake.org/] and it is aimed at building sets of software packages, handling ordering and setting up the environment to use them.

cd ~/vulcanexus_galactic
colcon build

Important

In case that only a set of packages are going to be built, please ensure to include always vulcanexus_base package in the set.
E.g.:

colcon build --packages-up-to demo_nodes_cpp vulcanexus_base

This auxiliary package is required to set several environment variables required by the distribution such as VULCANEXUS_DISTRO and VULCANEXUS_HOME.

2.6. Environment setup

In order to use the Vulcanexus installation, the environment must be set up sourcing the following file:

source ~/vulcanexus_galactic/install/setup.bash

3. Docker installation

Vulcanexus offers the possibility of running from a containerized environment by providing a Docker image which contains Vulcanexus’s Desktop installation.
This Docker image can be found in Vulcanexus’s Downloads [https://vulcanexus.org/download].
To run it, first install Docker:

sudo apt install docker.io

And then load the image with:

docker load -i ubuntu-vulcanexus-galactic-desktop.tar

Vulcanexus Docker image can be run with:

GUI support

xhost local:root
docker run \
 -it \
 --privileged \
 -e DISPLAY=$DISPLAY \
 -v /tmp/.X11-unix:/tmp/.X11-unix \
 ubuntu-vulcanexus:galactic-desktop

CLI support

docker run -it ubuntu-vulcanexus:galactic-desktop

To run more than one session within the same container, Vulcanexus installation must be sourced.
Given a running container, you can open another session by:

docker exec -it <running-container-id> bash

Then, within the container, source the Vulcanexus installation with:

source /opt/vulcanexus/galactic/setup.bash

To verify that the sourcing was correct, run:

echo $VULCANEXUS_HOME

The output should be:

/opt/vulcanexus/galactic

1. ROS 2 network statistics using Vulcanexus Tools

Table of Contents

	Background

	Prerequisites

	Launch Fast DDS Monitor

	Execute ROS 2 demo nodes with statistics

	Monitoring network

	Alias

	Physical data

	Statistical data

	Introspect metatraffic topics

1.1. Background

Vulcanexus integrates eProsima Fast DDS Monitor [https://fast-dds-monitor.readthedocs.io/en/latest/], which is a useful tool for monitoring and studying a ROS 2 network as ROS 2 relies on the DDS specification [https://www.omg.org/spec/DDS/1.4/About-DDS/] to communicate the different nodes.
The automatic discovery of entities in a local network enables to easily identify the different running Participants, their Endpoints, the Topics that each of them is using, and even the network interfaces they are employing to communicate with one another.
Additionally, it is possible to receive statistical data from every endpoint in the network leveraging the Fast DDS Statistics Module [https://fast-dds.docs.eprosima.com/en/latest/fastdds/statistics/statistics.html].
This data is very useful to analyze the DDS network performance and seek possible communication problems in it.

This tutorial provides step-by-step instructions to use Vulcanexus to monitor a ROS 2 talker/listener demo.

1.2. Prerequisites

Ensure that the Vulcanexus installation includes the Vulcanexus tools (either vulcanexus-galactic-desktop, vulcanexus-galactic-tools, or vulcanexus-galactic-base).
Also, remember to source the environment in every terminal in this tutorial.

source /opt/vulcanexus/galactic/setup.bash

1.3. Launch Fast DDS Monitor

Initiate Fast DDS Monitor running the following command:

fastdds_monitor

Once Fast DDS Monitor is launched, start a monitor in domain 0 (default domain).

[image: ../../_images/init_domain.png]

1.4. Execute ROS 2 demo nodes with statistics

In order to activate the publication of statistical data, eProsima Fast DDS [https://fast-dds.docs.eprosima.com/en/latest/] requires an environment variable specifying which kinds of statistical data are to be reported.
Consequently, before launching the ROS 2 nodes, remember to set FASTDDS_STATISTICS environment variable.
Run the following commands in different terminals (remember to source the Vulcanexus environment):

export FASTDDS_STATISTICS="HISTORY_LATENCY_TOPIC;NETWORK_LATENCY_TOPIC;PUBLICATION_THROUGHPUT_TOPIC;\
SUBSCRIPTION_THROUGHPUT_TOPIC;RTPS_SENT_TOPIC;RTPS_LOST_TOPIC;\
HEARTBEAT_COUNT_TOPIC;ACKNACK_COUNT_TOPIC;NACKFRAG_COUNT_TOPIC;\
GAP_COUNT_TOPIC;DATA_COUNT_TOPIC;RESENT_DATAS_TOPIC;SAMPLE_DATAS_TOPIC;\
PDP_PACKETS_TOPIC;EDP_PACKETS_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_TOPIC"

ros2 run demo_nodes_cpp listener

export FASTDDS_STATISTICS="HISTORY_LATENCY_TOPIC;NETWORK_LATENCY_TOPIC;PUBLICATION_THROUGHPUT_TOPIC;\
SUBSCRIPTION_THROUGHPUT_TOPIC;RTPS_SENT_TOPIC;RTPS_LOST_TOPIC;\
HEARTBEAT_COUNT_TOPIC;ACKNACK_COUNT_TOPIC;NACKFRAG_COUNT_TOPIC;\
GAP_COUNT_TOPIC;DATA_COUNT_TOPIC;RESENT_DATAS_TOPIC;SAMPLE_DATAS_TOPIC;\
PDP_PACKETS_TOPIC;EDP_PACKETS_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_TOPIC"

ros2 run demo_nodes_cpp talker

1.5. Monitoring network

Now, the two new Participants are visible in the Fast DDS Monitor’s DDS Panel.

[image: ../../_images/participants.png]

1.5.1. Alias

Participants in ROS 2 are named / by default.
In order to differentiate them, it is possible to change the Participant’s aliases within the Fast DDS Monitor.
In this case, the vulcanexus-galactic-talker Participant would be the one with a writer, and the vulcanexus-galactic-listener Participant would be the one with a reader.

[image: ../../_images/alias.png]

1.5.2. Physical data

In order to see the information of the host and the physical context where every node is running, go to the Explorer Pane and activate the Physical Panel.
There, the host, user and process of each node are displayed.

[image: ../../_images/physical.png]

1.5.3. Statistical data

To show statistical data about the communication between the vulcanexus-galactic-talker and the vulcanexus-galactic-listener, follow the steps to create dynamic series chart [https://fast-dds-monitor.readthedocs.io/en/latest/rst/getting_started/tutorial.html#tutorial-create-dynamic-series].

[image: ../../_images/statistics.png]

1.5.4. Introspect metatraffic topics

Fast DDS Monitor filters by default the topics used for sharing metatraffic, as well as the endpoints related to them, so users can inspect their network easily.
These topics are the ones that ROS 2 uses for discovery and configuration purposes, such as ros_discovery_info, as well as those used by Fast DDS to report statistical data.

In order to see these topics in the monitor, click View->Show Metatraffic menu button.
Now, these topics are shown in the logical panel. Furthermore, the Readers and Writers associated to them are now listed under their respective Participants.

[image: ../../_images/metatraffic.png]

2. Vulcanexus Cloud and Kubernetes

Table of Contents

	Background

	Prerequisites

	Local setup

	Local router

	Talker

	Kubernetes setup

	DDS-Router deployment

	Listener deployment

2.1. Background

This walk-through tutorial sets up both a Kubernetes (K8s) network and a local environment in order to establish communication between a pair of ROS nodes, one sending messages from a LAN (talker) and another one receiving them in the Cloud (listener).
Cloud environments such as container-oriented platforms can be connected using eProsima DDS Router [https://eprosima-dds-router.readthedocs.io/en/latest/], and thus, by launching a DDS Router instance at each side, communication can be established.

[image: ../../_images/ddsrouter_overview_wan.png]

2.2. Prerequisites

Ensure that the Vulcanexus installation includes the cloud and the ROS 2 demo nodes package (it is suggested to use vulcanexus-galactic-desktop).
Also, remember to source the environment in every terminal in this tutorial.

source /opt/vulcanexus/galactic/setup.bash

Warning

For the full understanding of this tutorial basic understanding of Kubernetes is required.

2.3. Local setup

The local instance of DDS Router (local router) only requires to have a Simple Participant [https://eprosima-dds-router.readthedocs.io/en/latest/rst/user_manual/participants/simple.html] and a WAN Participant [https://eprosima-dds-router.readthedocs.io/en/latest/rst/user_manual/participants/wan.html] that will play the client role in the discovery process of remote participants (see Discovery Server discovery mechanism [https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/discovery_server.html]).

After having acknowledged each other’s existence through Simple DDS discovery mechanism [https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/simple.html] (multicast communication), the local participant will start receiving messages published by the ROS 2 talker node, and will then forward them to the WAN participant.
Next, these messages will be sent to another participant hosted on a K8s cluster to which it connects via WAN communication over UDP/IP.
Following there is a representation of the above-described scenario:

[image: ../../_images/vulcanexus_local.png]

2.3.1. Local router

The configuration file used by the local router will be the following:

local-ddsrouter.yaml

allowlist:
 - name: "rt/chatter"
 type: "std_msgs::msg::dds_::String_"

SimpleParticipant:
 type: local
 domain: 0

LocalWAN:
 type: wan
 id: 3
 listening-addresses: # Needed for UDP communication
 - ip: "3.3.3.3" # LAN public IP
 port: 30003
 transport: "udp"
 connection-addresses:
 - id: 2
 addresses:
 - ip: "2.2.2.2" # Public IP exposed by the k8s cluster to reach the cloud DDS-Router
 port: 30002
 transport: "udp"

Please, copy the previous configuration snippet and save it to a file in your current working directory with name local-ddsrouter.yaml.

Note that the simple participant will be receiving messages sent in DDS domain 0.
Also note that, due to the choice of UDP as transport protocol, a listening address with the LAN public IP address needs to be specified for the local WAN participant, even when behaving as client in the participant discovery process.
Make sure that the given port is reachable from outside this local network by properly configuring port forwarding in your Internet router device.
The connection address points to the remote WAN participant deployed in the K8s cluster.
For further details on how to configure WAN communication, please have a look at WAN Configuration [https://eprosima-dds-router.readthedocs.io/en/latest/rst/user_manual/wan_configuration.html].

Note

As an alternative, TCP transport [https://eprosima-dds-router.readthedocs.io/en/latest/rst/user_manual/wan_configuration.html#tcp-example] may be used instead of UDP.
This has the advantage of not requiring to set a listening address in the local router’s WAN participant (TCP client), so there is no need to fiddle with the configuration of your Internet router device.

To launch the local router, execute the following command (remember to source the Vulcanexus environment):

ddsrouter --config-path local-ddsrouter.yaml

2.3.2. Talker

In another terminal, run the following command in order to start the ROS 2 node that publishes messages in DDS domain 0 (remember to source the Vulcanexus environment):

ros2 run demo_nodes_cpp talker

2.4. Kubernetes setup

Two different deployments are required to receive the talker messages in the Cloud, each in a different K8s pod; the first one being a DDS Router cloud instance (cloud router), which consists of two participants:

	A WAN Participant [https://eprosima-dds-router.readthedocs.io/en/latest/rst/user_manual/participants/wan.html] that receives the messages coming from our LAN through the aforementioned UDP communication channel.

	A Local Discovery Server [https://eprosima-dds-router.readthedocs.io/en/latest/rst/user_manual/participants/local_discovery_server.html] (local DS) that propagates them to a ROS 2 listener node hosted in a different K8s pod.

Note

The choice of a Local Discovery Server instead of a Simple Participant to communicate with the listener has to do with the difficulty of enabling multicast routing in cloud environments.

The other deployment is the ROS 2 listener node.
This node has to be launched as a Client to the local DS running on the first deployment.

The described scheme is represented in the following figure:

[image: ../../_images/vulcanexus_cloud.png]

In addition to the two mentioned deployments, two K8s services [https://kubernetes.io/docs/concepts/services-networking/service/] are required in order to direct dataflow to each of the pods.
A LoadBalancer will forward messages reaching the cluster to the WAN participant of the cloud router, and a ClusterIP service will be in charge of delivering messages from the local DS to the listener pod.
Following there are the settings needed to launch these services in K8s:

kind: Service
apiVersion: v1
metadata:
 name: ddsrouter
 labels:
 app: ddsrouter
spec:
 ports:
 - name: UDP-30002
 protocol: UDP
 port: 30002
 targetPort: 30002
 selector:
 app: ddsrouter
 type: LoadBalancer

kind: Service
apiVersion: v1
metadata:
 name: local-ddsrouter
spec:
 ports:
 - name: UDP-30001
 protocol: UDP
 port: 30001
 targetPort: 30001
 selector:
 app: ddsrouter
 clusterIP: 192.168.1.11 # Private IP only reachable within the k8s cluster to communicate with the ddsrouter application
 type: ClusterIP

Note

An Ingress [https://kubernetes.io/docs/concepts/services-networking/ingress/] needs to be configured for the LoadBalancer service to make it externally-reachable.
In this example we consider the assigned public IP address to be 2.2.2.2.

The configuration file used for the cloud router will be provided by setting up a ConfigMap [https://kubernetes.io/docs/concepts/configuration/configmap/]:

kind: ConfigMap
apiVersion: v1
metadata:
 name: ddsrouter-config
data:
 ddsrouter.config.file: |-
 allowlist:
 - name: "rt/chatter"
 type: "std_msgs::msg::dds_::String_"

 LocalDiscoveryServer:
 type: local-discovery-server
 ros-discovery-server: true
 id: 1
 listening-addresses:
 - ip: "192.168.1.11" # Private IP only reachable within the k8s cluster to communicate with the ddsrouter application
 port: 30001
 transport: "udp"

 CloudWAN:
 type: wan
 id: 2
 listening-addresses:
 - ip: "2.2.2.2" # Public IP exposed by the k8s cluster to reach the cloud DDS-Router
 port: 30002
 transport: "udp"

Following there is a representation of the overall K8s cluster configuration:

[image: ../../_images/vulcanexus_k8s.png]

2.4.1. DDS-Router deployment

The cloud router is launched from within a Vulcanexus Cloud Docker image (that can be downloaded in Vulcanexus webpage), which uses as configuration file the one hosted in the previously set up ConfigMap.
Assuming the name of the generated Docker image is ubuntu-vulcanexus-cloud:galactic, the cloud router will then be deployed with the following settings:

kind: Deployment
apiVersion: apps/v1
metadata:
 name: ddsrouter
 labels:
 app: ddsrouter
spec:
 replicas: 1
 selector:
 matchLabels:
 app: ddsrouter
 template:
 metadata:
 labels:
 app: ddsrouter
 spec:
 volumes:
 - name: config
 configMap:
 name: ddsrouter-config
 items:
 - key: ddsrouter.config.file
 path: DDSROUTER_CONFIGURATION.yaml
 containers:
 - name: ubuntu-vulcanexus-cloud
 image: ubuntu-vulcanexus-cloud:galactic
 ports:
 - containerPort: 30001
 protocol: UDP
 - containerPort: 30002
 protocol: UDP
 volumeMounts:
 - name: config
 mountPath: /tmp
 args: ["-r", "ddsrouter -r 10 -c /tmp/DDSROUTER_CONFIGURATION.yaml"]
 restartPolicy: Always

2.4.2. Listener deployment

Since ROS 2 demo nodes package is not installed by default in Vulcanexus Cloud, a new Docker image adding in this functionality must be generated.
Also, the IP address and port of the local Discovery Server must be specified, so a custom entrypoint is also provided.

Copy the following snippet and save it to the current directory as Dockerfile:

FROM ubuntu-vulcanexus-cloud:galactic

Install demo-nodes-cpp
RUN source /opt/vulcanexus/galactic/setup.bash && \
 apt update && \
 apt install -y ros-galactic-demo-nodes-cpp

COPY ./run.bash /
RUN chmod +x /run.bash

Setup entrypoint
ENTRYPOINT ["/run.bash"]

Copy the following snippet and save it to the current directory as run.bash:

#!/bin/bash

if [[$1 == "listener"]]
then
 NODE="listener"
else
 NODE="talker"
fi

SERVER_IP=$2
SERVER_PORT=$3

Setup environment
source "/opt/vulcanexus/galactic/setup.bash"

echo "Starting ${NODE} as client of Discovery Server ${SERVER_IP}:${SERVER_PORT}"
ROS_DISCOVERY_SERVER=";${SERVER_IP}:${SERVER_PORT}" ros2 run demo_nodes_cpp ${NODE}

Build the docker image running the following command:

docker build -t vulcanexus-cloud-demo-nodes:galactic -f Dockerfile

Now, the listener pod can be deployed by providing the following configuration:

kind: Deployment
apiVersion: apps/v1
metadata:
 name: ros2-galactic-listener
 labels:
 app: ros2-galactic-listener
spec:
 replicas: 1
 selector:
 matchLabels:
 app: ros2-galactic-listener
 template:
 metadata:
 labels:
 app: ros2-galactic-listener
 spec:
 containers:
 - name: vulcanexus-cloud-demo-nodes
 image: vulcanexus-cloud-demo-nodes:galactic
 args:
 - listener
 - 192.168.1.11
 - '30001'
 restartPolicy: Always

Once all these components are up and running, communication should have been established between the talker and listener nodes, so that messages finally manage to reach the listener pod and get printed in its STDOUT.

Feel free to interchange the locations of the ROS nodes by slightly modifying the provided configuration files, hosting
the talker in the K8s cluster while the listener runs in the LAN.

3. Vulcanexus and micro-ROS

micro-ROS already provides several tutorials that can be also run within Vulcanexus.
Please, visit micro-ROS tutorial webpage [https://micro.ros.org/docs/tutorials/core/overview/].

1. Supported platforms

Vulcanexus ROS 2 all-in-one tool set, is officially available in the platforms specified in the table below.

Vulcanexus officially supported platforms

	Vulcanexus Version

	Architecture

	OS

	Galactic Gamble

	amd64

	Ubuntu Focal (20.04)

However, as ROS 2 is officially supported in the platforms stated in the REP 2000 specification [https://www.ros.org/reps/rep-2000.html], building Vulcanexus for these platforms is expected to succeed.
Other platforms not mentioned in the REP 2000 specification may also build successfully and be used.

2. Vulcanexus Releases

Vulcanexus maintains several releases with different support cycles.
Each year, a new Vulcanexus major version is released.
This major versions have a code name composed of an adjective and the name of a volcano, both starting with the same letter, the first of them being Galactic Gamble (v1.0.0).
Within the support period of any version, there can be both minor and patch releases that either add new functionalities in an ABI compatible way, or fix possible issues.
Every other year, a long term release (LTS) is released, the first of them being the H version (May 2022).
In between, LTSs a short term release is released which will receive support for a shorter period of time.
The following table outlines the Vulcanexus releases and their support cycles:

Vulcanexus versions

	Name

	Version

	Release Date

	EOL Date

	Galactic Gamble

	v1

	TODO

	November 2022

2.1. Galactic Gamble (v1.0.0)

Index

 _images/vulcanexus_local.png
4 LAN;)

eProsima DDS Router Allowed topics

- Topic name: rt/chatter
- Topic data type: String_

UDP Channel

Fast DDS Reader : Fast DDS Writer

- Topic name: <auto> - Topic name: <auto>
- Topic data type: <auto> - Topic data type: <auto>

Fast DDS Writer Fast DDS Reader

- Topic name: <auto> - Topic name: <auto>
- Topic data type: <auto> - Topic data type: <auto>

_images/vulcanexus_cloud.png
UDP Channel

DDS-ROUTER POD)

eProsima DDS Router Allowed topics

Fast DDS Reader

- Topic name: <auto>
- Topic data type: <auto>

Fast DDS Writer

- Topic name: <auto>
- Topic data type: <auto>

- Topic name: rt/chatter
- Topic data type: String_

" LISTENERPOD)

Fast DDS Writer

- Topic name: <auto>
- Topic data type: <auto>

Fast DDS Reader

- Topic name: <auto>
- Topic data type: <auto>

_images/vulcanexus_k8s.png
DDS-Router Deployment

DDS-Router Service Local DDS-Router Service ROS 2 Listener Deployment

DDS-Router Pod

- External Load Balancer: - Cluster-IP: Listener Pod
>
o channe! 2222 - Services: 192.168.1.11
PP - ddsrouter (external) _ _ - Discovery Server address:
- Service port mapping: - local-ddsrouter (internal) - Service port mapping: 192.168.1.11:30001

30002/UDP - Config Map: ddsrouter-config 30001/UDP

- Application: DDS-Router - Application: DDS-Router

Discovery Traffic

User Data Traffic

_static/file.png

_static/minus.png

_static/plus.png

_images/participants.png
File Edit View Help

Fast DDS Monitor

DDS Entities

B DataReader_rt/chatter.
&/
/7 DataWriter_rt/chatter_0.0.12.3

PARTICIPANT:/
Name value
alias /
alive true
guid 01.0£.47.31.32.62.24.81.01.00.00...
id 1
kind participant
locators
0 UDPV4[127.0.0.11:7414
1 UDPV4:[127.0.0.1]:7415
metatraffic false
name /
~ qos
available_builtin_endpoints 3135
~ lease_duration
nanoseconds 0
seconds 20
~ properties
-0
name PARTICIPANT_TYPE
value SIMPLE
user_data 656e636¢6176653d2f3b0
~ vendor_id
) 1
1 15

_images/physical.png
Fast DDS Monitor

DDS Entities

vulcanexus-galacticlistener
B DataReader_rt/chatter_

Physical

1Y eprosima-XPS-15-9560:11103376243074662400

0 274757
0 274813

PARTICIPANT: vulcanexus-galactic-talker

Name Value
alias vulcanexus-galactic-talker
alive true
quid 01.07.4b.49.7d.31.32.8¢.01.00.00...
id 79
kind participant
~ locators
[] UDPV4127.00.1}7416
1 UDPV4127.00.1}7417
metatraffic false
name /
- qos

available_builtin_endpoints 205458495
- lease_duration

nanoseconds [
seconds 20
~ properties
~0
name PARTICIPANT_TYPE
value SIMPLE
user_data 656636c6176653d2f3b0
- vendor_id

0
1

1
15

_images/logo.png

_images/metatraffic.png
Fast DDS Monitor
File Edit View Help

Explorer
DDS Entities

& vulcanexus-galactic-listener

vulcanexus-galactic-talker

A Physical

1Y eprosima-XPS-15-9560:11103376243074662400
@© eprosima
0 275666
0 275717 A

Logical
P ———

A% rt/parameter_events

4% ra/talker/get_parametersRequest
4% ra/talker/get_parameter_typesRequest
#% rr/talker/get_parametersReply

A% rr/talker/set_parametersReply

#% rq/talker/set_parameters_atomicallyRequest
#% rr/talker/get_parameter_typesReply

#% rq/talker/set_parametersRequest

TOPIC: rt/chatter

Name Value
~ ACKNACK_COUNT

SUM 998,000000 [count]
~ DATA_COUNT

SUM 2271,000000 [count]
~ EDP_PACKETS

SUM 316,000000 [count]
~ FASTDDS_LATENCY

MEDIAN 206,413000 [s]

STANDARD_DEVIATION 461928,998322 [yss]
~ GAP_COUNT

SUM 10,000000 [count]
~ HEARTBEAT_COUNT

SUM 2147,000000 [count]
~ NACKFRAG_COUNT

SUM 0,000000 [count]
~ NETWORK_LATENCY

MEDIAN 57,465000 [us]

STANDARD_DEVIATION 178,377026 [pss]
~ PDP_PACKETS

SUM 4577,000000 [count]

~ PUBLICATION_THROUGHPUT
AT AN AED GOCOna Mkl

_images/statistics.png
Fast DDS Monitor

DDS Entities

Icanexus-galactic-listener
B DataReader_rt/chatter_0.0.12.4
UDPV4:{127.0.0.1]:7415

vulcanexus-galactic-talker
/7 DataWriter_rt/chatter_0.0.12.3
UDPV4:{127.0.01]:7417

Physical

1Y eprosima-XPS-15-9560:11103376243074662400
@© eprosima
0 275666
B 275717

i) 0
¥ rt/chatter

PARTICIPANT: vulcanexus-galactic-listener

Name Value
~ ACKNACK_COUNT
SUM 101,000000 [count]
~ DATA_COUNT
SUM 1,000000 [count]
~ EDP_PACKETS
SUM 62,000000 [count]
~ FASTDDS_LATENCY
MEDIAN 11,713000 [us]
STANDARD_DEVIATION 0,369000 [us]
~ GAP_COUNT
SUM 0,000000 [count]
~ HEARTBEAT_COUNT
SUM 22,000000 [count]
~ NACKFRAG_COUNT
SUM 0,000000 [count]
~ PDP_PACKETS
SUM 871,000000 [count]
~ PUBLICATION_THROUGHPUT
MEDIAN 163,993813 [B/s]
STANDARD_DEVIATION 258491337282 [B/5]
~ RESENT_DATA

MEAN 1000000 Teanntl -

lcanexus Talker Pu
Chart Series Real Time

Chart Series Real Time

© SD_eprosima-XPS-15-9560<74>_eprosima-XPS-15-9560<74>

2000 ® 400
z Ral| = A
= sl | F £3)
£ S G D S =
2 1500 l4 5 le,
I - S O U N,
g W 0 3 0
€ 100 g
- T
5 £ 200
) H
[e e]
g soo E
i I}
2 S W N EDD D DD 2
a H
00 v
G030 100330 100400 100830 100500 PN R A A R
L — G030 Too330 To0i00 To0430 Toos00
Time (hmmss]
© SD_eprosima-XPS-15-9560<74>
© MIN_eprosima-XPs-15-9560<74> © MEAN_eprosima-XPS-15-9560<74>
© MAX_eprosima-XPS-15-9560<74> © SD_eprosima-XP5-15-9560<74>
Chart Series Real Time Chart Series Real Time
4000 ® 10.0 ®
" "
£3) £3)
7 l4 le,
g z
2 z
3 I 00
& = *
[
< 2000 3 s0
g ;)
[g
& H ..y .o v, V. v, V..
&
0.0 0.0
0300 100330 100400 100430 100500 G030 100330 100400 100830 100500
L — Time (hmmss]
© MEAN_eprosima-XPS-15-9560<74>_eprosima-XPS-15-9560<74> © MAX_eprosima-XPS-15-9560<74>

© SUM_eprosima-XP5-15-9560<74>

nav.xhtml

 Table of Contents

 		
 Vulcanexus Documentation

_images/ddsrouter_overview_wan.png

Cloud
Server

eProsima DDS Router

“ WAN Participant
Custom Participants

eProsima DDS Router

WAN Participant “

o e

Private
LAN

CODESHIP
kubernetes

_ Np
ffifamazon

AF webservices

-~ - -

e mm e m—m = ——— -

N e oo

_images/init_domain.png
File Edit View Help

Fast DDS Monitor

DDS Entities

Noentity selected
Name Value
No monitors active. Start a monitor in a specific domain

Initialize Monitor

DDS Domain:

Cancel

0

>

oK

_images/alias.png
Fast DDS Monitor

DDS Entities

vulcanexus-galacticlistener
B DataReader_rt/chatter_0.0.12.4

PARTICIPANT:/
Name value
alias
alive true
guid 01.0.4b.49.7d.31.32.8¢.01.00.00.. |
id 79
kind participant
~ locators.
0 UDPV4:[127.0.0.11:7416
1 UDPV4:[127.0.0.1]:7417
metatraffic false
name /
~ qos
available_builtin_endpoints 205458495
~ lease_duration
nanoseconds 0
seconds 20
~ properties
-0
name PARTICIPANT_TYPE
value SIMPLE
user_data 6560636¢6176653d2f3b0
~ vendor_id
0 1

1

15

Add new alias

A

Current entity alias: /

New entity alias:

Cancel

vulcanexus-galactic-talker|

oK

_static/css/imgs/logo.png

