
Vulcanexus Documentation
Release 1.0.0

eProsima

Feb 28, 2023

INSTALLATION MANUAL

1 Linux binary installation 3
1.1 ROS 2 prerequisites . 3
1.2 Setup Vulcanexus sources . 4
1.3 Install eProsima Vulcanexus packages . 4
1.4 Environment setup . 5
1.5 Uninstall eProsima Vulcanexus packages . 5

2 Linux installation from sources 7
2.1 ROS 2 prerequisites . 7
2.2 Get ROS 2 code . 8
2.3 Get Vulcanexus code . 9
2.4 Install Vulcanexus dependencies . 9
2.5 Build the code in the workspace . 9
2.6 Environment setup . 10

3 Docker installation 11

4 ROS 2 network statistics using Vulcanexus Tools 13
4.1 Background . 13
4.2 Prerequisites . 13
4.3 Launch Fast DDS Monitor . 14
4.4 Execute ROS 2 demo nodes with statistics . 14
4.5 Monitoring network . 15

5 Vulcanexus Cloud and Kubernetes 19
5.1 Background . 19
5.2 Prerequisites . 20
5.3 Local setup . 20
5.4 Kubernetes setup . 22

6 Vulcanexus and micro-ROS 27

7 Supported platforms 29

8 Vulcanexus Releases 31
8.1 Galactic Gamble (v1.0.0) . 31

i

ii

Vulcanexus Documentation, Release 1.0.0

Vulcanexus is a ROS 2 (Robot Operating System) all-in-one tool set. It allows users to build robotics applications
combining the unique Vulcanexus elements with the ROS 2 libraries, having Fast DDS as its fixed middleware imple-
mentation.

These open source elements include numerous features and tools, providing Vulcanexus users customizable solutions
while improving overall system performance. With Vulcanexus, users have fast access to constantly improving func-
tionalities, such as the latest Fast DDS version along with its new features.

Vulcanexus combinable elements are:

1. VULCANEXUS-CORE: a set of software libraries that enables users to build the most comprehensive and
straightforward robotics application. It consists of eProsima Fast DDS and ROS 2.

2. VULCANEXUS-TOOLS: a set of features and applications which allows users to test, improve and configure
the performance of Vulcanexus in their systems.

3. VULCANEXUS-MICRO: provides access for resource constrained devices (micro-controllers) to the DDS
world, bridging the gap between them and ROS 2.

4. VULCANEXUS-CLOUD: scales and integrates ROS 2 networks located in geographically spaced environ-
ments, and enables the deployment of DDS entities in the cloud in a quick and easy way.

5. VULCANEXUS-SIMULATION: enables users to design robotic simulations, providing an end-to-end devel-
opment environment to model, program, and simulate robots.

Vulcanexus created a collection of downloadable packages that include useful combinations of the previously described
elements with ROS 2:

The following documentation includes instructions for installing each Vulcanexus packages, some tutorials help users
to get started, and the supported platforms and releases.

INSTALLATION MANUAL 1

http://www.vulcanexus.com/

Vulcanexus Documentation, Release 1.0.0

2 INSTALLATION MANUAL

CHAPTER

ONE

LINUX BINARY INSTALLATION

Debian packages for Vulcanexus Galactic Gamble are currently available for Ubuntu Focal. Since Vulcanexus is a ROS
2 all-in-one tool set, certain ROS 2 prerequisites need to be met before installing.

1.1 ROS 2 prerequisites

First of all, set up a UTF-8 locale as required by ROS 2. Locale settings can be checked and set up with the following
commands:

locale # check for UTF-8

sudo apt update && sudo apt install locales
Any UTF-8 locale will work. Using en_US as an example
sudo locale-gen en_US en_US.UTF-8
sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
export LANG=en_US.UTF-8

ROS 2 also requires that the Ubuntu Universe repository is enabled. This can be checked and enabled with the following
commands:

apt-cache policy | grep universe

This should print something similar to:
#
500 http://us.archive.ubuntu.com/ubuntu focal/universe amd64 Packages
release v=20.04,o=Ubuntu,a=focal,n=focal,l=Ubuntu,c=universe,b=amd64
#
Otherwise run

sudo apt install software-properties-common
sudo add-apt-repository universe

Now download ROS 2 GPG key into the keystore.

sudo apt update && sudo apt install curl gnupg lsb-release
sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o /usr/
→˓share/keyrings/ros-archive-keyring.gpg

And finally add ROS 2 repository to the repository manager sources list.

3

Vulcanexus Documentation, Release 1.0.0

echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-
→˓keyring.gpg] http://packages.ros.org/ros2/ubuntu $(source /etc/os-release && echo
→˓$UBUNTU_CODENAME) main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null

1.2 Setup Vulcanexus sources

Once all ROS 2 prerequisites have been met, it is time to start setting up Vulcanexus.

First, add the Qt 5.15 repository, required for the installation of several Fast DDS Monitor dependencies, running the
commands:

sudo apt install software-properties-common
sudo add-apt-repository ppa:beineri/opt-qt-5.15.2-focal

Next, add Vulcanexus GPG key so apt can retrieve the packages:

sudo curl -sSL https://raw.githubusercontent.com/eProsima/vulcanexus/main/vulcanexus.key␣
→˓-o /usr/share/keyrings/vulcanexus-archive-keyring.gpg

Finally, add the eProsima Vulcanexus repository to the repository manager sources list:

echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/vulcanexus-
→˓archive-keyring.gpg] http://repo.vulcanexus.org/debian $(source /etc/os-release &&␣
→˓echo $UBUNTU_CODENAME) main" | sudo tee /etc/apt/sources.list.d/vulcanexus.list > /dev/
→˓null

1.3 Install eProsima Vulcanexus packages

Remember to update the apt repository caches after setting up the repositories:

sudo apt update

Desktop install (Recommended): includes all the simulation tools, demos, and tutorials.

sudo apt install vulcanexus-galactic-desktop

Base Install: basic installation without simulation tools, demos, and tutorials.

sudo apt install vulcanexus-galactic-base

For other Vulcanexus packages, please refer to the Introduction section for more information.

4 Chapter 1. Linux binary installation

Vulcanexus Documentation, Release 1.0.0

1.4 Environment setup

In order to use the Vulcanexus installation, the environment must be set up sourcing the following file:

source /opt/vulcanexus/galactic/setup.bash

1.5 Uninstall eProsima Vulcanexus packages

To uninstall Vulcanexus, it is enough to run the following command :

sudo apt autoremove vulcanexus-galactic-desktop

1.4. Environment setup 5

Vulcanexus Documentation, Release 1.0.0

6 Chapter 1. Linux binary installation

CHAPTER

TWO

LINUX INSTALLATION FROM SOURCES

This section explains how to build Vulcanexus in Ubuntu Focal. Since Vulcanexus is a ROS 2 all-in-one tool set, certain
ROS 2 prerequisites need to be met before building.

2.1 ROS 2 prerequisites

First of all, set up a UTF-8 locale as required by ROS 2. Locale settings can be checked and set up with the following
commands:

locale # check for UTF-8

sudo apt update && sudo apt install locales
Any UTF-8 locale will work. Using en_US as an example
sudo locale-gen en_US en_US.UTF-8
sudo update-locale LC_ALL=en_US.UTF-8 LANG=en_US.UTF-8
export LANG=en_US.UTF-8

ROS 2 also requires that the Ubuntu Universe repository is enabled. This can be checked and enabled with the following
commands:

apt-cache policy | grep universe

This should print something similar to:
#
500 http://us.archive.ubuntu.com/ubuntu focal/universe amd64 Packages
release v=20.04,o=Ubuntu,a=focal,n=focal,l=Ubuntu,c=universe,b=amd64
#
Otherwise run

sudo apt install software-properties-common
sudo add-apt-repository universe

Now download ROS 2 GPG key into the keystore.

sudo apt update && sudo apt install curl gnupg lsb-release
sudo curl -sSL https://raw.githubusercontent.com/ros/rosdistro/master/ros.key -o /usr/
→˓share/keyrings/ros-archive-keyring.gpg

And then add ROS 2 repository to the repository manager sources list.

7

Vulcanexus Documentation, Release 1.0.0

echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/ros-archive-
→˓keyring.gpg] http://packages.ros.org/ros2/ubuntu $(source /etc/os-release && echo
→˓$UBUNTU_CODENAME) main" | sudo tee /etc/apt/sources.list.d/ros2.list > /dev/null

With the ROS 2 repository properly set up the next step is to install the required dependencies and tools for cloning and
testing the ROS 2 packages within the workspace.

sudo apt update && sudo apt install -y \
build-essential \
cmake \
git \
python3-colcon-common-extensions \
python3-flake8 \
python3-pip \
python3-pytest-cov \
python3-rosdep \
python3-setuptools \
python3-vcstool \
wget
install some pip packages needed for testing
python3 -m pip install -U \
flake8-blind-except \
flake8-builtins \
flake8-class-newline \
flake8-comprehensions \
flake8-deprecated \
flake8-docstrings \
flake8-import-order \
flake8-quotes \
pytest-repeat \
pytest-rerunfailures \
pytest \
setuptools

2.2 Get ROS 2 code

Create a workspace for Vulcanexus and clone the ROS 2 repositories

mkdir -p ~/vulcanexus_galactic/src
cd ~/vulcanexus_galactic
wget https://raw.githubusercontent.com/ros2/ros2/galactic/ros2.repos
vcs import src < ros2.repos

Now download the required dependencies for these packages.

sudo rosdep init
rosdep update
rosdep install --from-paths src --ignore-src -y --skip-keys "fastcdr rti-connext-dds-5.3.
→˓1 urdfdom_headers"

8 Chapter 2. Linux installation from sources

Vulcanexus Documentation, Release 1.0.0

2.3 Get Vulcanexus code

Add the Vulcanexus repositories and metadata files to the Vulcanexus workspace:

cd ~
cd vulcanexus_galactic
wget https://raw.githubusercontent.com/eProsima/vulcanexus/galactic/vulcanexus.repos
wget https://raw.githubusercontent.com/eProsima/vulcanexus/galactic/colcon.meta
vcs import --force src < vulcanexus.repos

2.4 Install Vulcanexus dependencies

Some additional dependencies which are required for the Vulcanexus distribution must be installed. Start by adding
the Qt 5.15 repository required for the installation of several Fast DDS Monitor dependencies:

sudo apt install -y software-properties-common
sudo add-apt-repository -y ppa:beineri/opt-qt-5.15.2-focal

Next, install the Vulcanexus required development tools:

sudo apt update && sudo apt install -y \
libp11-dev \
libengine-pkcs11-openssl \
libyaml-cpp-dev \
openjdk-8-jdk \
qt5-default \
qt5153d \
qt515charts-no-lgpl \
qt515graphicaleffects \
qt515quickcontrols \
qt515quickcontrols2 \
qt515quicktimeline-no-lgpl \
qt515svg \
qt515tools \
qt515translations \
swig

2.5 Build the code in the workspace

If any other Vulcanexus or ROS 2 distribution has been installed from binaries, please ensure that the build is done in
a fresh environment (previous installation is not sourced). This can be checked running the following command:

printenv | grep 'VULCANEXUS\|ROS'

The output should be empty. Please, be aware that in case the environment sourcing has been added to .bashrc, it
must be removed in order to get a fresh environment.

2.3. Get Vulcanexus code 9

Vulcanexus Documentation, Release 1.0.0

2.5.1 Build Fast DDS-Gen (Optional)

Fast DDS-Gen is a Java application that generates source code using the data types defined in an IDL file. This tool must
be built separately following the instructions below. Please, refer to Fast DDS-Gen documentation for more information
about this tool.

cd src/eProsima/fastddsgen
./gradlew assemble

The generated Java application can be found in share/fastddsgen. However, the scripts folder provides some
user friendly scripts that are recommended to be used. This scripts can be made accessible to the session adding the
scripts folder path to the PATH environment variable.

export PATH=~/vulcanexus_galactic/src/eProsima/fastddsgen/scripts:$PATH

2.5.2 Build workspace

In order to build the workspace, the command line tool colcon is used. This tool is based on CMake and it is aimed at
building sets of software packages, handling ordering and setting up the environment to use them.

cd ~/vulcanexus_galactic
colcon build

Important: In case that only a set of packages are going to be built, please ensure to include always vulcanexus_base
package in the set. E.g.:

colcon build --packages-up-to demo_nodes_cpp vulcanexus_base

This auxiliary package is required to set several environment variables required by the distribution such as
VULCANEXUS_DISTRO and VULCANEXUS_HOME.

2.6 Environment setup

In order to use the Vulcanexus installation, the environment must be set up sourcing the following file:

source ~/vulcanexus_galactic/install/setup.bash

10 Chapter 2. Linux installation from sources

https://fast-dds.docs.eprosima.com/en/latest/fastddsgen/introduction/introduction.html
https://colcon.readthedocs.io/en/released/
https://cmake.org/

CHAPTER

THREE

DOCKER INSTALLATION

Vulcanexus offers the possibility of running from a containerized environment by providing a Docker image which
contains Vulcanexus’s Desktop installation. This Docker image can be found in Vulcanexus’s Downloads. To run it,
first install Docker:

sudo apt install docker.io

And then load the image with:

docker load -i ubuntu-vulcanexus-galactic-desktop.tar

Vulcanexus Docker image can be run with:

GUI support

xhost local:root
docker run \

-it \
--privileged \
-e DISPLAY=$DISPLAY \
-v /tmp/.X11-unix:/tmp/.X11-unix \
ubuntu-vulcanexus:galactic-desktop

CLI support

docker run -it ubuntu-vulcanexus:galactic-desktop

To run more than one session within the same container, Vulcanexus installation must be sourced. Given a running
container, you can open another session by:

docker exec -it <running-container-id> bash

Then, within the container, source the Vulcanexus installation with:

source /opt/vulcanexus/galactic/setup.bash

To verify that the sourcing was correct, run:

echo $VULCANEXUS_HOME

The output should be:

/opt/vulcanexus/galactic

11

https://vulcanexus.org/download

Vulcanexus Documentation, Release 1.0.0

12 Chapter 3. Docker installation

CHAPTER

FOUR

ROS 2 NETWORK STATISTICS USING VULCANEXUS TOOLS

Table of Contents

• Background

• Prerequisites

• Launch Fast DDS Monitor

• Execute ROS 2 demo nodes with statistics

• Monitoring network

– Alias

– Physical data

– Statistical data

– Introspect metatraffic topics

4.1 Background

Vulcanexus integrates eProsima Fast DDS Monitor, which is a useful tool for monitoring and studying a ROS 2 network
as ROS 2 relies on the DDS specification to communicate the different nodes. The automatic discovery of entities in
a local network enables to easily identify the different running Participants, their Endpoints, the Topics that each of
them is using, and even the network interfaces they are employing to communicate with one another. Additionally, it is
possible to receive statistical data from every endpoint in the network leveraging the Fast DDS Statistics Module. This
data is very useful to analyze the DDS network performance and seek possible communication problems in it.

This tutorial provides step-by-step instructions to use Vulcanexus to monitor a ROS 2 talker/listener demo.

4.2 Prerequisites

Ensure that the Vulcanexus installation includes the Vulcanexus tools (either vulcanexus-galactic-desktop,
vulcanexus-galactic-tools, or vulcanexus-galactic-base). Also, remember to source the environment in
every terminal in this tutorial.

source /opt/vulcanexus/galactic/setup.bash

13

https://fast-dds-monitor.readthedocs.io/en/latest/
https://www.omg.org/spec/DDS/1.4/About-DDS/
https://fast-dds.docs.eprosima.com/en/latest/fastdds/statistics/statistics.html

Vulcanexus Documentation, Release 1.0.0

4.3 Launch Fast DDS Monitor

Initiate Fast DDS Monitor running the following command:

fastdds_monitor

Once Fast DDS Monitor is launched, start a monitor in domain 0 (default domain).

4.4 Execute ROS 2 demo nodes with statistics

In order to activate the publication of statistical data, eProsima Fast DDS requires an environment variable specifying
which kinds of statistical data are to be reported. Consequently, before launching the ROS 2 nodes, remember to set
FASTDDS_STATISTICS environment variable. Run the following commands in different terminals (remember to source
the Vulcanexus environment):

export FASTDDS_STATISTICS="HISTORY_LATENCY_TOPIC;NETWORK_LATENCY_TOPIC;PUBLICATION_
→˓THROUGHPUT_TOPIC;\
SUBSCRIPTION_THROUGHPUT_TOPIC;RTPS_SENT_TOPIC;RTPS_LOST_TOPIC;\
HEARTBEAT_COUNT_TOPIC;ACKNACK_COUNT_TOPIC;NACKFRAG_COUNT_TOPIC;\
GAP_COUNT_TOPIC;DATA_COUNT_TOPIC;RESENT_DATAS_TOPIC;SAMPLE_DATAS_TOPIC;\
PDP_PACKETS_TOPIC;EDP_PACKETS_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_TOPIC"

ros2 run demo_nodes_cpp listener

export FASTDDS_STATISTICS="HISTORY_LATENCY_TOPIC;NETWORK_LATENCY_TOPIC;PUBLICATION_
→˓THROUGHPUT_TOPIC;\
SUBSCRIPTION_THROUGHPUT_TOPIC;RTPS_SENT_TOPIC;RTPS_LOST_TOPIC;\
HEARTBEAT_COUNT_TOPIC;ACKNACK_COUNT_TOPIC;NACKFRAG_COUNT_TOPIC;\

(continues on next page)

14 Chapter 4. ROS 2 network statistics using Vulcanexus Tools

https://fast-dds.docs.eprosima.com/en/latest/

Vulcanexus Documentation, Release 1.0.0

(continued from previous page)

GAP_COUNT_TOPIC;DATA_COUNT_TOPIC;RESENT_DATAS_TOPIC;SAMPLE_DATAS_TOPIC;\
PDP_PACKETS_TOPIC;EDP_PACKETS_TOPIC;DISCOVERY_TOPIC;PHYSICAL_DATA_TOPIC"

ros2 run demo_nodes_cpp talker

4.5 Monitoring network

Now, the two new Participants are visible in the Fast DDS Monitor’s DDS Panel.

4.5.1 Alias

Participants in ROS 2 are named / by default. In order to differentiate them, it is possible to change the Participant’s
aliases within the Fast DDS Monitor. In this case, the vulcanexus-galactic-talker Participant would be the one
with a writer, and the vulcanexus-galactic-listener Participant would be the one with a reader.

4.5.2 Physical data

In order to see the information of the host and the physical context where every node is running, go to the Explorer
Pane and activate the Physical Panel. There, the host, user and process of each node are displayed.

4.5. Monitoring network 15

Vulcanexus Documentation, Release 1.0.0

16 Chapter 4. ROS 2 network statistics using Vulcanexus Tools

Vulcanexus Documentation, Release 1.0.0

4.5.3 Statistical data

To show statistical data about the communication between the vulcanexus-galactic-talker and the
vulcanexus-galactic-listener, follow the steps to create dynamic series chart.

4.5.4 Introspect metatraffic topics

Fast DDS Monitor filters by default the topics used for sharing metatraffic, as well as the endpoints related to them,
so users can inspect their network easily. These topics are the ones that ROS 2 uses for discovery and configuration
purposes, such as ros_discovery_info, as well as those used by Fast DDS to report statistical data.

In order to see these topics in the monitor, click View->Show Metatraffic menu button. Now, these topics are shown
in the logical panel. Furthermore, the Readers and Writers associated to them are now listed under their respective
Participants.

4.5. Monitoring network 17

https://fast-dds-monitor.readthedocs.io/en/latest/rst/getting_started/tutorial.html#tutorial-create-dynamic-series

Vulcanexus Documentation, Release 1.0.0

18 Chapter 4. ROS 2 network statistics using Vulcanexus Tools

CHAPTER

FIVE

VULCANEXUS CLOUD AND KUBERNETES

Table of Contents

• Background

• Prerequisites

• Local setup

– Local router

– Talker

• Kubernetes setup

– DDS-Router deployment

– Listener deployment

5.1 Background

This walk-through tutorial sets up both a Kubernetes (K8s) network and a local environment in order to establish
communication between a pair of ROS nodes, one sending messages from a LAN (talker) and another one receiving
them in the Cloud (listener). Cloud environments such as container-oriented platforms can be connected using eProsima
DDS Router, and thus, by launching a DDS Router instance at each side, communication can be established.

19

https://eprosima-dds-router.readthedocs.io/en/latest/
https://eprosima-dds-router.readthedocs.io/en/latest/

Vulcanexus Documentation, Release 1.0.0

5.2 Prerequisites

Ensure that the Vulcanexus installation includes the cloud and the ROS 2 demo nodes package (it is suggested to use
vulcanexus-galactic-desktop). Also, remember to source the environment in every terminal in this tutorial.

source /opt/vulcanexus/galactic/setup.bash

Warning: For the full understanding of this tutorial basic understanding of Kubernetes is required.

5.3 Local setup

The local instance of DDS Router (local router) only requires to have a Simple Participant and a WAN Participant that
will play the client role in the discovery process of remote participants (see Discovery Server discovery mechanism).

After having acknowledged each other’s existence through Simple DDS discovery mechanism (multicast communica-
tion), the local participant will start receiving messages published by the ROS 2 talker node, and will then forward them
to the WAN participant. Next, these messages will be sent to another participant hosted on a K8s cluster to which it
connects via WAN communication over UDP/IP. Following there is a representation of the above-described scenario:

5.3.1 Local router

The configuration file used by the local router will be the following:

local-ddsrouter.yaml

allowlist:
- name: "rt/chatter"
type: "std_msgs::msg::dds_::String_"

SimpleParticipant:
type: local
domain: 0

(continues on next page)

20 Chapter 5. Vulcanexus Cloud and Kubernetes

https://eprosima-dds-router.readthedocs.io/en/latest/rst/user_manual/participants/simple.html
https://eprosima-dds-router.readthedocs.io/en/latest/rst/user_manual/participants/wan.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/discovery_server.html
https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/simple.html

Vulcanexus Documentation, Release 1.0.0

(continued from previous page)

LocalWAN:
type: wan
id: 3
listening-addresses: # Needed for UDP communication
- ip: "3.3.3.3" # LAN public IP
port: 30003
transport: "udp"

connection-addresses:
- id: 2
addresses:

- ip: "2.2.2.2" # Public IP exposed by the k8s cluster to reach the cloud DDS-
→˓Router

port: 30002
transport: "udp"

Please, copy the previous configuration snippet and save it to a file in your current working directory with name
local-ddsrouter.yaml.

Note that the simple participant will be receiving messages sent in DDS domain 0. Also note that, due to the choice
of UDP as transport protocol, a listening address with the LAN public IP address needs to be specified for the local
WAN participant, even when behaving as client in the participant discovery process. Make sure that the given port is
reachable from outside this local network by properly configuring port forwarding in your Internet router device. The
connection address points to the remote WAN participant deployed in the K8s cluster. For further details on how to
configure WAN communication, please have a look at WAN Configuration.

Note: As an alternative, TCP transport may be used instead of UDP. This has the advantage of not requiring to set a
listening address in the local router’s WAN participant (TCP client), so there is no need to fiddle with the configuration
of your Internet router device.

To launch the local router, execute the following command (remember to source the Vulcanexus environment):

ddsrouter --config-path local-ddsrouter.yaml

5.3.2 Talker

In another terminal, run the following command in order to start the ROS 2 node that publishes messages in DDS
domain 0 (remember to source the Vulcanexus environment):

ros2 run demo_nodes_cpp talker

5.3. Local setup 21

https://eprosima-dds-router.readthedocs.io/en/latest/rst/user_manual/wan_configuration.html
https://eprosima-dds-router.readthedocs.io/en/latest/rst/user_manual/wan_configuration.html#tcp-example

Vulcanexus Documentation, Release 1.0.0

5.4 Kubernetes setup

Two different deployments are required to receive the talker messages in the Cloud, each in a different K8s pod; the
first one being a DDS Router cloud instance (cloud router), which consists of two participants:

• A WAN Participant that receives the messages coming from our LAN through the aforementioned UDP com-
munication channel.

• A Local Discovery Server (local DS) that propagates them to a ROS 2 listener node hosted in a different K8s
pod.

Note: The choice of a Local Discovery Server instead of a Simple Participant to communicate with the listener has to
do with the difficulty of enabling multicast routing in cloud environments.

The other deployment is the ROS 2 listener node. This node has to be launched as a Client to the local DS running on
the first deployment.

The described scheme is represented in the following figure:

In addition to the two mentioned deployments, two K8s services are required in order to direct dataflow to each of the
pods. A LoadBalancer will forward messages reaching the cluster to the WAN participant of the cloud router, and a
ClusterIP service will be in charge of delivering messages from the local DS to the listener pod. Following there are
the settings needed to launch these services in K8s:

kind: Service
apiVersion: v1
metadata:
name: ddsrouter
labels:
app: ddsrouter

spec:
ports:
- name: UDP-30002
protocol: UDP
port: 30002
targetPort: 30002

(continues on next page)

22 Chapter 5. Vulcanexus Cloud and Kubernetes

https://eprosima-dds-router.readthedocs.io/en/latest/rst/user_manual/participants/wan.html
https://eprosima-dds-router.readthedocs.io/en/latest/rst/user_manual/participants/local_discovery_server.html
https://kubernetes.io/docs/concepts/services-networking/service/

Vulcanexus Documentation, Release 1.0.0

(continued from previous page)

selector:
app: ddsrouter

type: LoadBalancer

kind: Service
apiVersion: v1
metadata:
name: local-ddsrouter

spec:
ports:
- name: UDP-30001
protocol: UDP
port: 30001
targetPort: 30001

selector:
app: ddsrouter

clusterIP: 192.168.1.11 # Private IP only reachable within the k8s cluster to␣
→˓communicate with the ddsrouter application
type: ClusterIP

Note: An Ingress needs to be configured for the LoadBalancer service to make it externally-reachable. In this example
we consider the assigned public IP address to be 2.2.2.2.

The configuration file used for the cloud router will be provided by setting up a ConfigMap:

kind: ConfigMap
apiVersion: v1
metadata:
name: ddsrouter-config

data:
ddsrouter.config.file: |-
allowlist:
- name: "rt/chatter"
type: "std_msgs::msg::dds_::String_"

LocalDiscoveryServer:
type: local-discovery-server
ros-discovery-server: true
id: 1
listening-addresses:
- ip: "192.168.1.11" # Private IP only reachable within the k8s cluster to␣

→˓communicate with the ddsrouter application
port: 30001
transport: "udp"

CloudWAN:
type: wan
id: 2
listening-addresses:
- ip: "2.2.2.2" # Public IP exposed by the k8s cluster to reach the cloud DDS-

→˓Router
(continues on next page)

5.4. Kubernetes setup 23

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/configuration/configmap/

Vulcanexus Documentation, Release 1.0.0

(continued from previous page)

port: 30002
transport: "udp"

Following there is a representation of the overall K8s cluster configuration:

5.4.1 DDS-Router deployment

The cloud router is launched from within a Vulcanexus Cloud Docker image (that can be downloaded in Vulcanexus
webpage), which uses as configuration file the one hosted in the previously set up ConfigMap. Assuming the name of
the generated Docker image is ubuntu-vulcanexus-cloud:galactic, the cloud router will then be deployed with
the following settings:

kind: Deployment
apiVersion: apps/v1
metadata:
name: ddsrouter
labels:
app: ddsrouter

spec:
replicas: 1
selector:
matchLabels:
app: ddsrouter

template:
metadata:
labels:
app: ddsrouter

spec:
volumes:
- name: config
configMap:
name: ddsrouter-config
items:
- key: ddsrouter.config.file
path: DDSROUTER_CONFIGURATION.yaml

containers:
- name: ubuntu-vulcanexus-cloud
image: ubuntu-vulcanexus-cloud:galactic
ports:

- containerPort: 30001
(continues on next page)

24 Chapter 5. Vulcanexus Cloud and Kubernetes

TODO:includefinalURL
TODO:includefinalURL

Vulcanexus Documentation, Release 1.0.0

(continued from previous page)

protocol: UDP
- containerPort: 30002
protocol: UDP

volumeMounts:
- name: config
mountPath: /tmp

args: ["-r", "ddsrouter -r 10 -c /tmp/DDSROUTER_CONFIGURATION.yaml"]
restartPolicy: Always

5.4.2 Listener deployment

Since ROS 2 demo nodes package is not installed by default in Vulcanexus Cloud, a new Docker image adding in this
functionality must be generated. Also, the IP address and port of the local Discovery Server must be specified, so a
custom entrypoint is also provided.

Copy the following snippet and save it to the current directory as Dockerfile:

FROM ubuntu-vulcanexus-cloud:galactic

Install demo-nodes-cpp
RUN source /opt/vulcanexus/galactic/setup.bash && \

apt update && \
apt install -y ros-galactic-demo-nodes-cpp

COPY ./run.bash /
RUN chmod +x /run.bash

Setup entrypoint
ENTRYPOINT ["/run.bash"]

Copy the following snippet and save it to the current directory as run.bash:

#!/bin/bash

if [[$1 == "listener"]]
then

NODE="listener"
else

NODE="talker"
fi

SERVER_IP=$2
SERVER_PORT=$3

Setup environment
source "/opt/vulcanexus/galactic/setup.bash"

echo "Starting ${NODE} as client of Discovery Server ${SERVER_IP}:${SERVER_PORT}"
ROS_DISCOVERY_SERVER=";${SERVER_IP}:${SERVER_PORT}" ros2 run demo_nodes_cpp ${NODE}

Build the docker image running the following command:

5.4. Kubernetes setup 25

Vulcanexus Documentation, Release 1.0.0

docker build -t vulcanexus-cloud-demo-nodes:galactic -f Dockerfile

Now, the listener pod can be deployed by providing the following configuration:

kind: Deployment
apiVersion: apps/v1
metadata:
name: ros2-galactic-listener
labels:
app: ros2-galactic-listener

spec:
replicas: 1
selector:
matchLabels:
app: ros2-galactic-listener

template:
metadata:
labels:
app: ros2-galactic-listener

spec:
containers:

- name: vulcanexus-cloud-demo-nodes
image: vulcanexus-cloud-demo-nodes:galactic
args:
- listener
- 192.168.1.11
- '30001'

restartPolicy: Always

Once all these components are up and running, communication should have been established between the talker and
listener nodes, so that messages finally manage to reach the listener pod and get printed in its STDOUT.

Feel free to interchange the locations of the ROS nodes by slightly modifying the provided configuration files, hosting
the talker in the K8s cluster while the listener runs in the LAN.

26 Chapter 5. Vulcanexus Cloud and Kubernetes

CHAPTER

SIX

VULCANEXUS AND MICRO-ROS

micro-ROS already provides several tutorials that can be also run within Vulcanexus. Please, visit micro-ROS tutorial
webpage.

27

https://micro.ros.org/docs/tutorials/core/overview/
https://micro.ros.org/docs/tutorials/core/overview/

Vulcanexus Documentation, Release 1.0.0

28 Chapter 6. Vulcanexus and micro-ROS

CHAPTER

SEVEN

SUPPORTED PLATFORMS

Vulcanexus ROS 2 all-in-one tool set, is officially available in the platforms specified in the table below.

Table 1: Vulcanexus officially supported platforms
Vulcanexus Version Architecture OS
Galactic Gamble amd64 Ubuntu Focal (20.04)

However, as ROS 2 is officially supported in the platforms stated in the REP 2000 specification, building Vulcanexus
for these platforms is expected to succeed. Other platforms not mentioned in the REP 2000 specification may also build
successfully and be used.

29

https://www.ros.org/reps/rep-2000.html

Vulcanexus Documentation, Release 1.0.0

30 Chapter 7. Supported platforms

CHAPTER

EIGHT

VULCANEXUS RELEASES

Vulcanexus maintains several releases with different support cycles. Each year, a new Vulcanexus major version is
released. This major versions have a code name composed of an adjective and the name of a volcano, both starting
with the same letter, the first of them being Galactic Gamble (v1.0.0). Within the support period of any version, there
can be both minor and patch releases that either add new functionalities in an ABI compatible way, or fix possible
issues. Every other year, a long term release (LTS) is released, the first of them being the H version (May 2022). In
between, LTSs a short term release is released which will receive support for a shorter period of time. The following
table outlines the Vulcanexus releases and their support cycles:

8.1 Galactic Gamble (v1.0.0)

Table 1: Vulcanexus versions
Name Version Release Date EOL Date
Galactic Gamble v1 TODO November 2022

31

	Linux binary installation
	ROS 2 prerequisites
	Setup Vulcanexus sources
	Install eProsima Vulcanexus packages
	Environment setup
	Uninstall eProsima Vulcanexus packages

	Linux installation from sources
	ROS 2 prerequisites
	Get ROS 2 code
	Get Vulcanexus code
	Install Vulcanexus dependencies
	Build the code in the workspace
	Build Fast DDS-Gen (Optional)
	Build workspace

	Environment setup

	Docker installation
	ROS 2 network statistics using Vulcanexus Tools
	Background
	Prerequisites
	Launch Fast DDS Monitor
	Execute ROS 2 demo nodes with statistics
	Monitoring network
	Alias
	Physical data
	Statistical data
	Introspect metatraffic topics

	Vulcanexus Cloud and Kubernetes
	Background
	Prerequisites
	Local setup
	Local router
	Talker

	Kubernetes setup
	DDS-Router deployment
	Listener deployment

	Vulcanexus and micro-ROS
	Supported platforms
	Vulcanexus Releases
	Galactic Gamble (v1.0.0)

